Expression of the unc-4 homeoprotein in Caenorhabditis elegans motor neurons specifies presynaptic input.
نویسندگان
چکیده
In the nematode, Caenorhabditis elegans, VA and VB motor neurons arise from a common precursor cell but adopt different morphologies and synapse with separate sets of interneurons in the ventral nerve cord. A mutation that inactivates the unc-4 homeodomain gene causes VA motor neurons to assume the VB pattern of synaptic input while retaining normal axonal polarity and output; the disconnection of VA motor neurons from their usual presynaptic partners blocks backward locomotion. We show that expression of a functional unc-4-beta-galactosidase chimeric protein in VA motor neurons restores wild-type movement to an unc-4 mutant. We propose that unc-4 controls a differentiated characteristic of the VA motor neurons that distinguishes them from their VB sisters, thus dictating recognition by the appropriate interneurons. Our results show that synaptic choice can be controlled at the level of transcription in the post-synaptic neuron and identify a homeoprotein that defines a subset of cell-specific traits required for this choice.
منابع مشابه
UNC-4 represses CEH-12/HB9 to specify synaptic inputs to VA motor neurons in C. elegans.
In Caenorhabditis elegans, VA and VB motor neurons arise as lineal sisters but synapse with different interneurons to regulate locomotion. VA-specific inputs are defined by the UNC-4 homeoprotein and its transcriptional corepressor, UNC-37/Groucho, which function in the VAs to block the creation of chemical synapses and gap junctions with interneurons normally reserved for VBs. To reveal downst...
متن کاملThe Groucho-like transcription factor UNC-37 functions with the neural specificity gene unc-4 to govern motor neuron identity in C. elegans.
Groucho and Tup1 are members of a conserved family of WD repeat proteins that interact with specific transcription factors to repress target genes. Here we show that mutations in WD domains of the Groucho-like protein, UNC-37, affect a motor neuron trait that also depends on UNC-4, a homeodomain protein that controls neuronal specificity in Caenorhabditis elegans. In unc-4 mutants, VA motor neu...
متن کاملRegulation of neurotransmitter vesicles by the homeodomain protein UNC-4 and its transcriptional corepressor UNC-37/groucho in Caenorhabditis elegans cholinergic motor neurons.
Motor neuron function depends on neurotransmitter release from synaptic vesicles (SVs). Here we show that the UNC-4 homeoprotein and its transcriptional corepressor protein UNC-37 regulate SV protein levels in specific Caenorhabditis elegans motor neurons. UNC-4 is expressed in four classes (DA, VA, VC, and SAB) of cholinergic motor neurons. Antibody staining reveals that five different vesicul...
متن کاملUNC-4/UNC-37-dependent repression of motor neuron-specific genes controls synaptic choice in Caenorhabditis elegans.
The UNC-4 homeoprotein and the Groucho-like corepressor UNC-37 specify synaptic choice in the Caenorhabditis elegans motor neuron circuit. In unc-4 mutants, VA motor neurons are miswired with inputs from interneurons normally reserved for their lineal sisters, the VB motor neurons. Here we show that UNC-4 and UNC-37 function together in VA motor neurons to repress VB-specific genes and that thi...
متن کاملThe C. elegans even-skipped homologue, vab-7, specifies DB motoneurone identity and axon trajectory.
Locomotory activity is defined by the specification of motoneurone subtypes. In the nematode, C. elegans, DA and DB motoneurones innervate dorsal muscles and function to induce movement in the backwards or forwards direction, respectively. These two neurone classes express separate sets of genes and extend axons with oppositely directed trajectories; anterior (DA) versus posterior (DB). The DA-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 121 9 شماره
صفحات -
تاریخ انتشار 1995